
Thursday, September 28th 2017

Any New Members?

Charity

• Casa De Peregrinos (Food Bank)

• 999 West Amador Suite F

• Available MWF

• Duties:

• Bagging, Sorting, Distributing, Cleaning, etc.

• We are helping to schedule groups and carpools

http://casadeperegrinos.org/home/volunteers

Charity

• PEEK Las Cruces Street Fair

• Locust Street on the New Mexico State University
campus

• Thursday, October 5, 2017

• Duties:
• Drinks, kids areas, general volunteer.

https://peekoflc.nmsu.edu/

Events

• Halloween Bash
• Bash or Carnival? Lets put it to a vote!

• New Event Ideas?

• How to handle food? Sodexo, Potluck, or Both?

• Updates
• Other clubs were notified, we’ll check back to

you on progress with collaborators

• As a A&S recognized club, we do have some
funding available, more can be “unlocked”

• Space/Time is set: Friday, October 27th

Game Night!

• We will be joining the CS 272 class for an evening
of fun and board games! We will be playing
Wizard (a card game) and Qwirkle.

• WHEN: Friday Oct. 6 at 6:30 pm

• WHERE: SH 124

Events

• A&S Council Meetings
• 2/3 meetings attended for club recognition

• Actually interesting and informative, worth going to

• Senate Meetings
• Held in the Senate Chambers (3rd Floor Corbett)

• Significant food available

• Meetings are held every other week

Nerd Moment

• Game Development Club has started
development on their game! They meet
after us, so stick around if you can ☺

Version Control: GiT
what it is, and why we use it

Quick Start

• GitHub and Code School teamed up to bring you an online
terminal tutorial for using Git via try.github.io

• You can use Git without a terminal.
• GitHub offers GitHub Desktop

• Many IDEs (Visual Studio, Eclipse, …) have plugins or native support
for connecting to Git repositories.

• I recommend using these tools over the command line for new users,
but learning the command line is good for tricky situations

• Comprehensive documentation is available at git-scm.com

Terminology

• Version control: A system which manages changes to files
• i.e., it manages different versions of the same file(s)

• Repository: A location where project files exist
• Can be local or remote (e.g., on the internet)

• Hosts: Something that contains one or more repositories

• e.g, GitHub is a popular free online repository host

Version Control 101

• Other Names: Revision Control, Source Control

• Version Control systems help manage changes to files by
different people at different times

• In a nutshell, it’s a managed way of managing a project files
used by a team (or an individual)

Version Control 102

• Sophisticated version control software can track individual
changes to files, manage several distinct “branches” of the
code independently, and merging inconsistencies between
changes no the same file

• Several flavors of version control exist
• Subversion (SVN) and Git are popular in the CS department

• Microsoft offers Team Foundation Server

• Gaming development companies often have other types of version
control as well

Git

• Git is presently the most popular choice for version control,
and for good reason!
• It’s supported by most IDEs

• It’s decentralized

• Every body gets an full copy of the repository

• Code versions are managed via changes to files, not entire files

• Multiple people can work on the same files without breaking stuff

• Conflicts can be manually resolved.

• In general, most new projects should be managed by Git

Git vs GitHub

• GitHub manages Git-based repositories, but it’s by no means
the only one.
• Bitbucket is also relatively common

• Some hosts also provide additional team centric features
• This can include Issue Tracking, Team Management, User Stories,

Kanban boards, Continuous Integration, Code Review, etc.

• Visual Studio Team Services is popular for private .NET teams

• GitLab is popular for private Java teams

• Both offer “free” versions, with premium features/versions available

Git: Workflow

• Create a remote Git repository (e.g., on Github)

• Clone the remote repo to a local one on your computer

• In your local repo:
• Add some files

• Commit your changes to Git (with a helpful message)

• Change/add files

• Commit your changes again (with a helpful message)

• Push all your commits to the remote repo (e.g., Github)

Git Notes/Terminology

• A repository (repo) is simply a folder with files, including
some special files describing itself

• Changes including everything do you to change the repo
• E.g., adds, deletes, renames, etc.

• Every change needs to recorded!

• A file can exist in your local repo, but not be tracked by Git!
• YOU choose what the repo recognizes

• Commits are like checkpoints. Commits do not affect the
remote repository until you tell them too.

• You can return to a checkpoint state at anytime once it’s made

• You can even revert a single file

Demo
The Basics

Working with Git Repos

• Often, you’ll encounter a link to a web hosted repo.

• Often, that repo will contain a README file of some kind
• These include author written instructions/guides for the code in the

repo!

• If you are making a web hosted Git repo yourself, guides exist!
• E.g., GitHub walks you through the process

Git: Essential Commands/Actions

git init
• Creates a Git repo in the current directory

• Not connected to remote repo yet!

git remote add origin <repo url>
git push -u origin master

• Sets the remote repo

git clone <repo url>
• Creates a new folder and creates a Git repo inside it

• Copies everything from the remote repo to the new local one

Git: Essential Commands/Actions

git add <files>
• Uses to start tracking specified files

• Can use wildcards (e.g., git add *.txt)

• Can use folders (e.g., git add src/)

git rm <files>
• Opposite of add!

• NOTE: you must remove files you delete

• Git can often figure out when files are moved/renamed, so
long as you don’t change files too much in the process

Git: Essential Commands/Actions

git commit –m “commit message”
• Wraps add/rm/etc commands into a commit with a specified

commit messag

• Your commit message matters! Others will read it to quickly figure what
changes the commit contains!

• If –m “message” is excluded, a simple vi text editor will open

• If you forget and you don’t know how to use vi, then Ctrl-C your way out of
there! Lookup basic vi usage to get started, but it’s not important if you use a
GUI

Git: Essential Commands/Actions

git fetch
• Checks the remote repo for updates, but doesn’t actually apply them

git pull
• Applies changes from the remote repo, if such changes exist

git push
• Applies your changes to the remote repo

• MUST pull before you push! (else, you will get an error)

Git Workflow 2.0

git fetch

git pull

<do changes>

git add <changes>

git commit –m <message>

git fetch

git pull

git push

Demo
Two Clients

Git: Branching

• Often, you want a group to work on a new feature/bug/version
without messing with your nice, mostly stable project

• To do this, you can create branches of your project.
• These are distinct versions of the code that teams can commit to,

separate from the original, or master, branch.

• For the most part, you don’t want to push to master, you want
to push to another branch.

• Once your changes are worthy, you merge your new branch
back with the master branch (or another branch!)

Git: Branching

git branch <branch name>
• Creates a new branch

• Current branch is unchanged

git checkout <branch name>
• Switches the current branch to the specified one

git checkout –b <branch name>
• Creates and switches to a new branch

git branch –l
• Lists available branches

Git: Merging

• Merging will combine a two branches together. So long as
nothing conflicts, the merge will occur seamlessly.

• If issues do exist, you need to go through those issues and
determine which changes you want in the final result.

git merge <other branch>
• Merges the other branch into the current branch

Git Workflow 3.0

<current branch is master>

git branch hotfix

git checkout hotfix

<make/commit changes>

git checkout master

git merge hotfix

git commit –m “message”

git push

Git Conflicts

• Scenario:
• Amy and Phillip both clone JavaFX_Tutorial

• Amy changes the README, adds the change, and commits

• Phillip changes the README, adds the change, and commits

• Amy pushes her commit.

• Phillip wants to push his commit, but gets and error.

• Which version of the should we take?

• Potentially both! We just need to sort out which changes to the file
we want, then commit those changes.

• However, this is still a pain, and should the scenario should be
avoided. However, it is often a necessary evil.

Merge Conflicts

• Scenario:
• Amy and Phillip both clone JavaFX_Tutorial

• Amy changes the README, adds the change, and commits to Master

• Philip changes to a new branch, “Docs”.

• Phillip changes the README, adds the change, and commits Docs

• Amy pushes her commit.

• Phillip pushes his commit.

• Phillip tries to merges Docs into Master

• Automatic merging fails due to conflicts

• Phillip resolves conflicts with a new commit

• Phillip pushes to Master

DEMO
Conflicts

Important Git Folders/Files

• Git tracks changes and all branches via the .git/ folder

• TL;DL: don’t touch it!

• Sometimes hidden, but it is there!

• Git can automatically ignore certain files/folders if specified
in a .gitignore file

• Must add it first before it starts to apply!

• PS – this is just a plain text file

• Additional settings are specified in the .gitattributes file

• Also a plain text file

• NOTE: all this special stuff is in the root folder of your project

Git Credentials

• To push to a remote repository, you will often need to give a
username and password.

• You can skip entering it if you specify your global username
and password

• You can also connect to your repo with SSH when you clone it
• More work upfront, but ideal

What to Put in Your Repo?

• Plain text files
• code, scripts, xml, ...

• Some images
• smaller is better

• Try not to change them

• Some audio files
• again, keep it small

• Once pushed, a file is permanently part of your repo

• If you clone one branch, you get them all, keep large files out of your
repo

Okay, but I need large files

• Use Git LFS
• Large File Storage

• Keeps specified files somewhere else, but pretend its in your
repository

• Great for game development, doesn’t change workflow once
configured

• Install with (do this only once):

git lfs install

Git LFS

• Tracking can be setup individually:

git lfs track “*.psd”

• Or it can be set in . gitattributes
• Must add!

Questions?

